We do need LH/hCG, and administration regimens could be critical

Prof. Marco FILICORI
Reproductive Endocrinology Center
University of Bologna
and
GynePro Medical
Bologna, Italy
Science has proof without any certainty
Creationists have certainty without any proof

Ashley Montague
British Anthropologist
(1905-1999)
How to provide LH activity

- human-derived LH
- recombinant LH
- human CG
 - conversion factor
 1 IU hCG = 6-8 IU LH
- recombinant CG
 - conversion factor
 1 µg rCG = 25-30 IU hCG

<table>
<thead>
<tr>
<th></th>
<th>LH content</th>
<th>CG content</th>
</tr>
</thead>
<tbody>
<tr>
<td>hMG</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>HP hMG</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>rLH</td>
<td>+++</td>
<td>0</td>
</tr>
<tr>
<td>hCG</td>
<td>0</td>
<td>+++</td>
</tr>
<tr>
<td>rCG</td>
<td>0</td>
<td>+++</td>
</tr>
</tbody>
</table>
The 2-cell, 2-gonadotropin concept:
A model revisited

- Theca
- FSH
- Granulosa
- Aromatase
- Proliferation
- LH
- Mid-late FP
- Follicle growth
- Preantral and small antral follicles (<10-12 mm)
 - Stimulation of **theca cell** androgen production

- Large antral follicles (>10-12 mm)
 - Stimulation of **theca cell** androgen production

FSH-like actions
- Stimulation of **granulosa cell** proliferation and growth
- Induction of **granulosa cell** aromatase to catalyze estrogen formation
Potential clinical implications of LH/hCG receptor expression by ovarian granulosa cells

Due to mid-late follicular phase interaction with granulosa cells, LH activity can:

- increase estrogen synthesis
 - enhanced availability of theca-derived androgen substrate
 - stimulation of aromatase
- modulate folliculogenesis
- synergize with FSH
- replace FSH
Rationale for LH activity supplementation

- estrogen effects on oocyte
- modulation of folliculogenesis
- FSH synergies
- FSH replacement
Serum levels of gonadal steroids
(Kilani et al, Hum Reprod, 18:1194, 2003)

- **E_2 (pg/mL)**
 - $P <0.05$

- **P (ng/mL)**
 - P NS

- **T (ng/mL)**
 - P NS

preovulatory E_2 (pg/mL)
- $P <0.005$

preovulatory P (ng/mL)
- P NS

preovulatory T (ng/mL)
- P NS

Graphs show the changes in E_2, P, and T levels over 10 days of treatment with rFSHα and HP hMG.
Estrogen mechanisms - oocyte

- estrogen receptors are present in human oocytes
 - Wu et al, Fertil Steril 59:54, 1993

- use of antiestrogens and of steroid synthesis blockers negatively affected oocyte cytoplasm (not nucleus) maturation and blastocyst development; effects were reversed by E$_2$
 - Yoshimura et al, Biol Reprod 35:943, 1986
 - Yoshimura et al, Endocrinology 120:2555, 1987

- aromatase inhibitors and steroid synthesis blockers lowered E$_2$ and reduced oocyte fertilizability
 - Hibbert et al, PNAS 93:1897, 1996
“Experiments of nature” models

- **17α-hydroxylase deficiency**
 - Rabinovici et al, JCE&M 68:693, 1989

- **17,20-desmolase deficiency**

- **in these conditions:**
 - very low serum and follicular fluid E_2 levels are present
 - *in-vitro* fertilization and embryo cleavage were obtained but no development beyond 7-cell stage (Rabinovici et al) nor pregnancy after embryo transfer (Pellicer et al) ensued
Estrogens and oocyte maturation

summary

- Ovarian follicle development can progress during FSH-only stimulation and in hypoestrogenic conditions.
- Estrogens do not affect oocyte nucleus and meiotic maturation.
- Oocyte cytoplasm and oolemma maturation are promoted by estrogens.
- Estrogens optimize oocyte fertilization and embryo viability.
Rationale for LH activity supplementation

- estrogen effects on oocyte
- modulation of folliculogenesis
- FSH synergies
- FSH replacement
Follicle development during ovulation induction with HP FSH (150 IU/day) alone or HP FSH (150 IU/day) & hCG (50 IU/day)

Filicori et al
JCE&M
84:2659,1999
Follicle development during ovulation induction with **HP FSH** (150 IU/day) or **hMG** (150 IU/day)

Filicori et al, JCE&M 86:337, 2001
Occurrence of small follicles just before ovulation vs. FSH & LH activity administered

Filicori et al, Hum Reprod 17:2009, 2002
Rationale for LH activity supplementation

- estrogen effects on oocyte
- modulation of folliculogenesis
- FSH synergies
- FSH replacement
Effects of rLH dose in rFSH treated HH women: preovulatory follicles and E$_2$ levels

European rLH group
JCE&M 83:1507, 1998
Ovulation induction in a patient with hypogonadotrophic secondary amenorrhea

cycle A
(HP FSH)

cycle B
(HP FSH & hCG)

Filicori et al, Fertil Steril, 72:1118, 1999
Recombinant LH administration in ovulation induction and COS

<table>
<thead>
<tr>
<th>Study</th>
<th>rLH dose (IU/day)</th>
<th>regimen</th>
<th>effects of rLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sills, 1999</td>
<td>75</td>
<td>COS</td>
<td>none</td>
</tr>
<tr>
<td>Marrs, 2004</td>
<td>150</td>
<td>COS</td>
<td>more transferred embryos</td>
</tr>
<tr>
<td>Acevedo, 2004</td>
<td>75</td>
<td>oocyte donors</td>
<td>more MII oocytes, fertilization & implantation rates</td>
</tr>
<tr>
<td>Humaidan, 2004</td>
<td>rFSH:rLH 2:1</td>
<td>COS from day 8</td>
<td>none</td>
</tr>
<tr>
<td>De Placido, 2005</td>
<td>150</td>
<td>COS from day 8</td>
<td>rLH more effective than rFSH increments in poor responders</td>
</tr>
<tr>
<td>Hugues, 2005</td>
<td>150-1325</td>
<td>OI in PCOS</td>
<td>reduces small follicles</td>
</tr>
<tr>
<td>Lisi, 2005</td>
<td>37.5-75</td>
<td>COS</td>
<td>higher implantation & pregnancy rates</td>
</tr>
<tr>
<td>Fabregues, 2006</td>
<td>150</td>
<td>COS</td>
<td>none</td>
</tr>
</tbody>
</table>
Gonadotropin dose administered (ampoules)

FSH only vs. FSH & LH activity in COS

<table>
<thead>
<tr>
<th>regimen</th>
<th>FSH alone</th>
<th>FSH & LH activity</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filicori et al, JCE&M 1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP FSH vs. HP FSH & hCG</td>
<td>35.6±2.2</td>
<td>23.0±1.1</td>
<td><0.0001</td>
</tr>
<tr>
<td>Filicori et al, JCE&M 2001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP FSH vs. hMG</td>
<td>33.6±2.4</td>
<td>23.6±1.1</td>
<td><0.005</td>
</tr>
<tr>
<td>Filicori et al, Fertil Steril 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rFSH vs. hMG</td>
<td>25.3±1.3</td>
<td>21.7±0.8</td>
<td><0.05</td>
</tr>
<tr>
<td>Kilani & Filicori, Hum Reprod 2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rFSH vs. HP hMG</td>
<td>27.0±1.5</td>
<td>22.4±1.0</td>
<td><0.01</td>
</tr>
</tbody>
</table>
Treatment duration and gonadotropin dose employed

(Kilani et al, Hum Reprod, 18:1194, 2003)

- Treatment duration (days)
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14

- Gonadotropin dose (ampoules)
 - 16
 - 18
 - 20
 - 22
 - 24
 - 26
 - 28
 - 30

* P<0.01

- P<0.01
Serum levels of gonadal steroids in hMG vs. rFSH cycles
(Filicori et al, Fertil Steril, 80:390, 2003)

- E_2 (pg/mL)
- P (ng/mL)
- T (ng/mL)
Correlations between progesterone levels (AUC) and gonadotropin activity administered

Filicori et al, Hum Reprod 17:2009, 2002
Relationship between premature luteinization and FSH dose and preovulatory LH level during ovulation induction

Bosch et al
Fertil Steril 80:1444, 2003
Endocrine profiles of HP hMG vs. rFSH in 731 cycles
(Smitz et al, Hum Reprod, 22:676, 2007)

- **serum during treatment**
 - in HP hMG cycles higher levels of
 - androstenedione, total testosterone, free androgen index

- **serum at midcycle**
 - in HP hMG cycles higher levels of
 - estradiol
 - in rFSH cycles higher levels of
 - progesterone

- **follicular fluid**
 - in HP hMG cycles higher levels of
 - LH, FSH, hCG, androstenedione, testosterone
 - $E_2:A$, $E_2:T$, $E_2:P$ ratios
 - in rFSH cycles higher levels of
 - progesterone
Recent clinical comparisons between FSH and hMG/HP hMG

 - metanalysis
 - higher clinical pregnancy rates in hMG vs. FSH treatment
 - no difference in ongoing pregnancy or live birth rates

- **Platteau et al**, *Fertil Steril* 81:1401, 2004
 - better pregnancy outcome in IVF patients treated with HP hMG vs. rFSHα
 - no difference in ICSI patients

 - trend (statistically nonsignificant) towards higher pregnancy rates in IVF patients treated with HP hMG (27%) vs. rFSHα (22%)
A novel chimeric recombinant gonadotropin (C3) with both FSH and hCG activity

SDS-PAGE and RP-HPLC of C3 and rhCG

Garone et al
Endocrinology
147:4205, 2006
Rationale for LH activity supplementation

- Estrogen effects on oocyte
- Modulation of folliculogenesis
- FSH synergies
- FSH replacement
Proposed ovarian stimulation regimen
Filicori and Cognigni, JCE&M, 86:1437, 2001

Exogenous gonadotropin dose

- Early FSH/hMG
- Mid low-dose hCG/rLH
- Late high-dose hCG

Follicular phase
Protocol scheme
Filicori et al, Fertil Steril 84:394, 2005

- Depot triptorelin 3.75 mg
- rFSH/hMG
- hCG 10,000 IU
- > 6 follicles > 12mm and E2 > 600 pg/mL

Group A (24 pts)
- rFSH/hMG
- OPU
- ICSI

Group B (24 pts)
- rFSH/hMG
- hCG 200 IU/day
- OPU
- ICSI

depot triptorelin 3.75 mg
Filicori et al, Fertil Steril 84:394, 2005
Preovulatory follicles
(before hCG 10,000 IU)

Felicori et al
Fertil Steril
84:394, 2005
Follicular fluid estrogen/androgen ratios

Filicori et al
Fertil Steril
84:394, 2005
Clinical outcome
Filicori et al, Fertil Steril 84:394, 2005

<table>
<thead>
<tr>
<th></th>
<th>group A (no hCG)</th>
<th>group B (hCG)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>overall treatment duration</td>
<td>days</td>
<td>11.6±0.2</td>
<td>11.9±0.1</td>
</tr>
<tr>
<td>rFSH/hMG duration</td>
<td>days</td>
<td>11.6±0.2</td>
<td>8.6±0.1</td>
</tr>
<tr>
<td>daily hCG duration</td>
<td>days</td>
<td>-</td>
<td>3.3±0.1</td>
</tr>
<tr>
<td>rFSH/hMG dose</td>
<td>IU</td>
<td>2,779±160</td>
<td>1,960±99</td>
</tr>
<tr>
<td>gonadotropin cost</td>
<td>€</td>
<td>1,146±66</td>
<td>808±41</td>
</tr>
<tr>
<td>mature oocytes</td>
<td>n</td>
<td>8.0±0.8</td>
<td>8.2±0.6</td>
</tr>
<tr>
<td>fertilization rates</td>
<td>%</td>
<td>48±4</td>
<td>74±3</td>
</tr>
<tr>
<td>good quality embryos</td>
<td>%</td>
<td>86±6</td>
<td>84±5</td>
</tr>
<tr>
<td>embryos transferred</td>
<td>n</td>
<td>2.3±0.2</td>
<td>2.5±0.1</td>
</tr>
<tr>
<td>pregnancy rates</td>
<td>%</td>
<td>21</td>
<td>25</td>
</tr>
</tbody>
</table>
Selective use of LH activity in the late stages of ovulation induction and COS

<table>
<thead>
<tr>
<th>Study</th>
<th>Type/Dose</th>
<th>Regimen</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filicori, 2002</td>
<td>hCG 200 IU</td>
<td>COS</td>
<td>LFP low dose hCG alone supports folliculogenesis and steroidogenesis</td>
</tr>
<tr>
<td>Filicori, 2002</td>
<td>hCG 200 IU</td>
<td>COS</td>
<td>first pregnancy with low dose hCG alone in LFP</td>
</tr>
<tr>
<td>Fabregues, 2003</td>
<td>rLH 375 IU</td>
<td>OI</td>
<td>pregnancy with rLH alone in LFP in HH pt</td>
</tr>
<tr>
<td>Lee, 2005</td>
<td>hCG 200 IU</td>
<td>PCOS</td>
<td>prevention of OHSS</td>
</tr>
<tr>
<td>Branigan, 2005</td>
<td>hCG 200 IU</td>
<td>Clomid OI</td>
<td>applicable in Clomid OI</td>
</tr>
<tr>
<td>Filicori, 2005</td>
<td>hCG 200 IU</td>
<td>COS</td>
<td>applicability confirmed in clinical setting</td>
</tr>
<tr>
<td>Kenigsberg, 2006</td>
<td>rCG 8 µg</td>
<td>COS-ant</td>
<td>applicability in antagonist cycles</td>
</tr>
<tr>
<td>Serafini, 2006</td>
<td>hCG 200 IU</td>
<td>COS-ant</td>
<td>clinical applicability in antagonist cycles</td>
</tr>
<tr>
<td>Gomes, 2006</td>
<td>hCG 200 IU</td>
<td>COS</td>
<td>reduced cost of COS</td>
</tr>
<tr>
<td>Koichi, 2006</td>
<td>hCG 200 IU</td>
<td>COS-ant</td>
<td>trends toward reduced OHSS</td>
</tr>
</tbody>
</table>
Rationale for LH activity supplementation

Summary

- there is no proof of untoward actions of LH activity in ovarian stimulation
- LH activity supplementation:
 - is critical for ovarian stimulation in hypogonadotropic hypogonadism
 - can benefit GnRH analog-treated patients, but impact of residual endogenous LH secretion is difficult to ascertain
- use of LH activity in ovarian stimulation provides a more balanced follicle response pattern and can limit progesterone secretion
- proper use of LH activity in COS can:
 - lower FSH dose requirements
 - enhance serum and intrafollicular estrogen activity
 - reduce serum and intrafollicular progesterone levels
 - optimize folliculogenesis and reduce small preovulatory follicles
 - allow to limit FSH administration in the last COS stages
Do we need to add LH/hCG for ovarian stimulation?

Conclusions

Do we have proof that:

- LH activity is a fundamental component of physiologic and stimulated cycles?
 - Yes, abundantly

- We need LH activity in ovarian stimulation?
 - Yes, but source (endogenous or exogenous), type (LH or hCG), and dose required is still controversial

- Novel LH activity administration regimens could drastically optimize ovarian stimulation?
 - Yes, and late follicular phase FSH replacement with LH/hCG appears most promising, though for commercial reasons it may never gain wide acceptance

So, what about certainty?

- Leave it to the creationists!