ATRIAL FIBRILLATION AND STROKE PREVENTION – WARFARIN IS NO MORE AN OPTION
Lakshmi Narasimhan Ranganathan
Institute of Neurology, Madras Medical College, Apollo Hospitals, Chennai, India

Introduction: Atrial fibrillation (AF) is a tachy arrhythmia arising above the ventricular tissue and is characterized by bizarre atrial activation with consequent deterioration of mechanical function i.e. atrial contraction. Estimated prevalence of atrial fibrillation is approximately 1% which increases with age to 6% by the age of 65 and to 10% at the age of 80+. Management of atrial fibrillation involves three key areas, namely control of the rate and the rhythm and the prevention of thromboembolic manifestations.

Atrial fibrillation and stroke: Patients with AF have higher risk of embolic stroke, heart failure, cognitive decline, reduced quality of life and higher mortality. Stroke risk is increased five fold in patients with AF and 25% of all the stroke in the elderly are due to AF. Anti thrombotics and anti platelet drugs are the mainstay for prevention of systemic thromboembolism.

Treatment options for Stroke prevention in patients with AF: Among the various options, Aspirin, though it is convenient to use but provides insufficient protection, for stroke prevention in high-risk patients Vitamin K antagonists especially Warfarin have greater efficacy but a range of limitations make them inferior agents to use because of the following reasons:
- Narrow therapeutic window
- Variable and unpredictable pharmacokinetics and pharmaco dynamics
- Wide variety of drug–drug and drug–food interactions
- Need for regular anticoagulation monitoring and dose adjustments
- Slow onset and offset of action.

The most feared complication of antithrombotic therapy is intra cerebral haemorrhage. The Vitamin K antagonists (VKAs) warfarin is used in only half of eligible patients with Atrial Fibrillation. Under use of warfarin is greatest in elderly patients who are at the highest risk of stroke. They have a very narrow therapeutic window. The contraindications that make patients unsuitable for VKAs are found most frequently in elderly patients who are often at the greatest risk of stroke. Failure to prescribe warfarin for eligible patients is a pervasive problem, despite available guidelines for its use in non valvular AF who have moderate to severe risk of stroke. Only 65% of patients with heart failure and AF were prescribed warfarin at the time of discharge. Thus a large number of patients with AF are not being prescribed or are refusing to take it or are stopping it on their own. Hence the search for newer ideal anticoagulants was on.

Ideal anticoagulant should be effective with minimal complications/side effects, should be convenient to administer (i.e: oral for outpatients). It should be rapidly absorbed and should have fast on and offset action, predictable pharmacokinetics with no interactions with food or drugs and no need to monitor.

New anticoagulants are challenging the predominance of Vitamin K antagonist especially warfarin for stroke prophylaxis in patients with AF. Since 2007, three large trials of novel anticoagulants compared to VKA have been completed with a combined sample size of approximately 50,000 subjects:
- Re-LY, with approximately 18,000 subjects and the new director factor II (thrombin) antagonist DABIGATRON.
- ROCKET AF with approximately 14000 subjects and the new factor X inhibitor RIVAROXABAN.
- ARISTOTLE with approximately 14,000 subjects and the new factor X inhibitor APIXABON.

Mechanical devices like left atrial appendage occlusive devices (LAA) are increasingly used in elderly patients with AF with a history of falls or previous history of bleeding or pregnant women and/or noncompliant patients.

Conclusion: The newer novel anticoagulants and the mechanical devices should be considered as an alternative replacement to VKA especially the warfarin. The time to say “good bye” to warfarin has come.
Targets for novel antithrombotic agents in the coagulation cascade

1. Adapted from Turpie AG. Eur Heart J 2008;29:155–65;
4. NCT00580216; available at www.ClinicalTrials.gov; accessed Sept 09;
5. Lopes RD et al. Am Heart J 2010;159:331–9;
8. NCT00781391; available at www.ClinicalTrials.gov; accessed Sept 09;
9. NCT00742859; available at www.ClinicalTrials.gov; accessed Sept 09;

AT= antithrombin; Ph = Phase

Direct Factor Xa inhibitors:
- Apixaban (Ph III ongoing)5,6
- Rivaroxaban (Ph III completed)7
- Edoxaban (Ph III ongoing)8
- Betrixaban (Ph II ongoing)9

Direct thrombin inhibitors:
- Dabigatran etexilate (Ph III completed)10
- Ximelagatran (withdrawn 2006)11,12
- AZD0837 (Ph II completed)13

Indirect Factor Xa inhibitors:
- Idaraparinux (Ph III terminated)3
- SSR 126517 (withdrawn 2009)9

Vitamin K antagonist: Tocarfarin (Ph II completed)2

Direct thrombin inhibitors (DTIs) block both circulating and clot-bound thrombin

Adapted from Eikelboom J et al. J Am Coll Cardiol 2003;41:705–8S
Direct and indirect factor Xa (FXa) inhibition

INDIRECT
Binds to antithrombin (AT) and potentiates the activity of AT against FXa (e.g. idraparinux, SSR 126517)

DIRECT
Binds directly to the active site of FXa, blocking substrate interactions (e.g. apixaban, rivaroxaban, edoxaban, betrixaban)

New and Emerging Anticoagulants

- **Anti – Xa : direct**
 - Rivaroxaban (oral)
 - Apixaban (oral)
 - Betrixib (oral)
 - Edoxaban (oral)
 - Otamixaban (parenteral)
 - LY – 517717 (oral)
 - DU – 176B (oral)
 - DX – 9065a (parenteral)
 - PRT054021 (oral)

- **Anti – IIa**
 - Dabigatran (oral)
 - Odiparcel (oral)
 - Flougatran (parenteral)
 - Pegmusirudin (parenteral)
 - Peg Hirudin
 - Desiruidin

- **Anti – Xa : indirect**
 - Idraparinux biotinylated (parenteral)
