THE ROLE OF THETA OSCILLATIONS IN VESTIBULAR GUIDED SPATIAL WORKING MEMORY

Y. Wan, N. Yousif, B. Seemungal Imperial College London, London, UK

Human navigation involves storing internal representations of self motion and spatial location. The vestibular system plays a crucial role in spatial cognition. Furthermore, theta (4-8Hz) brain oscillations, important in spatial memory processing, are disrupted by vestibular lesions. We hypothesised that theta oscillations are involved in spatial memory encoding during vestibular-guided spatial navigation.

Scalp electroencephalograms (EEG) were recorded in 9 healthy subjects during a vestibular navigation task divided into 3 consecutive memory phases: (i) Encoding (ii) Maintenance and (iii) Retrieval. We hypothesised that theta would be increased during the encoding versus maintenance. Time-series data was analysed using a Welch windowed spectrogram on each individual's data to obtain power spectral density (PSD) and significance ascertained by repeated measures ANOVA and t-tests.

We found a significant PSD increase in electrodes T5 and T6 between encoding and maintenance (p = 0.03 and 0.02 respectively).

Our data supports the evidence that human temporal cortex is involved in encoding vestibular motion signals and that the related neural synchronisation occurs at the theta frequency.