A protein-protein interaction connecting neuroinflammation and neurodegeneration in Alzheimer's disease

F. Cioffi¹, W. Adamski¹, R. Bansal³, K. Broersen¹, J. Parkash³, R. Veerhuis⁴, H. Wienk²

¹Nanobiophysics, MIRA Institute for Biomedical Technology and TEchnical Medicine, Faculty of Science and Technology, Universiteit Twente, The Netherlands

²Department of Chemistry, Bijovet Center for Biomolecular Research, Utrecht Universiteit, The Netherlands

³Biomaterials Science and TEchnology, MIRA Institute for Biomedical Technology and TEchnical Medicine, Faculty of Science and Technology, Universiteit Twente, The Netherlands

⁴Department of Psych9iatry, VU University Medical Center, The Netherlands

Neuroinflammation is associated with Alzheimer's disease (AD) and it is considered a secondary response to amyloid-beta (A β) deposition and neuronal cell death. The neuroinflammatory response is driven by interferon-gamma (IFN γ)-mediated microglia activation but how neuroinflammation and neurodegeneration are connected is unclear and is subject of this study. We show that IFN γ can interact with A β and modulates its aggregation behavior by using biopysical techniques. Moreover, exposure of microglia to the formed IFN- γ -A β complex resulted in an enhanced pro-inflammatory response compared to the individual interaction partners. We suggest that the interaction between A β and IFN γ may explain the observed connection between neurodegeneration and neuroinflammation in AD.