Longterm lamotrigine therapy and bone health

A. Mehicevic, N. Mahmutbegovic, E. Suljic

Neurology Clinic, University Clinical Center Sarajevo, Bosnia and Herzegovina

Previous study data reported that CYP450 inducing antiepileptic drugs alter the activity of the enzymes responsible for vitamin D metabolism, leading to reduced calcium absorption, increased bone resorption and accelerated bone mass loss. Nevertheless, data on non-enzyme inducing antiepileptics are insufficient and less is known about the possible mechanisms they can alter the bone metabolism. Objectives: Therefore, we decided to measure serum levels of 25-OHD and osteocalcin (OCLN) in normal controls (n=30) and in epilepsy patients taking lamotrigin (LTG) (n = 50) in monotherapy for a period of at least twelve months. For each participant, mineral density (BMD) was evaluated by dual-energy X-ray absorptiometry method. Results: The average value of vitamin D in serum was significantly lower in LTG group than in control group (Vit D 17.97±9.15 vs. 32.03 ± 6.99 , p=0, 0001). The average value of osteocalcin in serum was higher in LTG group than in control group (27.87±28.45 vs. $19.64\pm6,54$, p=0,004) but this difference was not statistically significant. BMD value in LTG group was lower than in control group (T. score LTG: 0.37 ± 1.02 vs. T. score control: 0.73 ± 1.13 , p= 0.031; Z score LTG: 0.38 ± 0.96 vs. Z. score control: 0.55 ± 0.79 , p=0,015) but this difference was not statistically significant. Conclusion: Patients on long-term therapy with non-enzyme-inducing antiepileptic agents could benefit of routine measurement of biochemical markers of bone turnover, and BMD measurement as part of osteoporosis investigation.