BRAIN RECOVERY AND NEUROTECHOLOGIES

Dafin F. Muresanu Chairman Department of Clinical Neurosciences University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj -Napoca, Romania

Brain damage affects all three levels of structural and functional organization: cellular and molecular level, circuitries level and dynamic network level and launches an endogenous continuous brain defense response which consists in neuroprotection (the immediate response) and neurorecovery (a later response).

Endogenous neuromodulation represents at the cellular and molecular level the optimization of common biological processes that could potentially generate cell death or promote neurodegeneration. At the circuitries and dynamic network levels, it represents the tendency in reinbalancing of functional connectivity in resting-state networks.

In the last years, there has been a substantial effort in understanding the brain functioning and how to enhance endogenous neuromodulation and neurorehabilitation in general, by using a large spectrum of neurotechnologies such as imaging techniques (functional magnetic resonance imaging, ligant-based positron emission tomography, diffusion-tensor imaging), quantitative electroencephalogram, magnetoencephalography, eye tracking, optogenetics, transcranial magnetic stimulation, transcranial direct current simulation, deep brain simulation, computational neuroscience and brain-computer interfaces. The combination between these technologies provides valuable information about the structure-function relationship underling resting-state networks, about the dynamic cross-talk between networks and about the abnormalities in the functional connectivity in different pathologies.